Uncategorized

New study finds way to stop excessive bone growth following trauma or surgery

(PHILADELPHIA) – A recent United States Army study found that excessive bone growth, also known as heterotopic ossificiation (HO), affects up to 70 percent of soldiers who are severely wounded during combat. A much smaller percentage of the civilian population also suffers from HO following trauma or invasive surgery. The excessive bone forms within muscles and other tissues causing severe pain, reduced mobility and even local paralysis if untreated. A new study by Thomas Jefferson University researchers found a way to prevent HO in animal models by shutting the process off in its early stages. The study, reported in September’s Journal of Orthopaedic Research, is expected to lead to clinical trials and may hopefully provide a new, effective and safe treatment for HO.

“This is a major breakthrough in HO research,” said Primary Investigator Maurizio Pacifici, Ph.D, director of Orthopedic Research at Jefferson Medical College of Thomas Jefferson University. “We are able to largely prevent formation and progression of HO lesions. We presented our initial results at a recent U.S. Army Extremity War Injuries Symposium in Washington D.C. and they were very well-received and have elicited great hope on the part of military physicians to finally have a way to stop HO in troops wounded in war zones.”

In the ongoing study sponsored by the U.S. Army, Jefferson scientists were able to prevent HO by disrupting a series of cellular changes that are needed to produce HO. Following a trauma or invasive surgery, the condition begins when progenitor and stem cells are recruited to the injured site and give rise to cartilage tissue that then turns to bone. This multi-step process is regulated by several factors. One of these factors is a protein in the nucleus of the progenitor cells that is called the retinoid alpha receptor. This receptor must be turned off before the progenitor cells can form cartilage tissue. The Jefferson scientists, using a pharmacological agent, an alpha agonist, kept the receptors active, stifling the initiation of the disease in its tracks.

Josh Sandberg

Josh Sandberg is the President and CEO of Ortho Spine Partners and sits on several company and industry related Boards. He also is the Creator and Editor of OrthoSpineNews.

Related Articles

Back to top button